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PREFACE

EMR Aerospace Sciences has designed, fabricated and tested an
antenna dispenser mechanism for the IMP J Spacecraft. Upon
command the mechanism deploys or retracts a conductor for use

as a receiving antenna for an Electric Field Measurement experiment.

Five identical units were fabricated and tested to the IMP H & J
Environmental Test Specification. Of these, four are designated for

flight on the IMP J Spacecraft and one as a prototype flight spare.

The testing program was successfully completed although certain
design modifications were required as problems were uncovered by the

testing; particularly Thermal Vacuum operation.

The antenna mechanism functions well under the expected environmental
and loading conditions. The wear life and load capability of the dry
molybdenum disulphide lubricant originally used on the heavily loaded
worm and gear pair were disappointing and a substitute material developed

by the GSFC materials sections was applied,

The lubricant finally applied performed well;although other problems

were generated,



The use of dry lubricants for unsealed space application is mandatory.
More effort should be made to solve this worm gear lubrication problem
for any future units, The insulation chosen (FEP teflon) for the antenna
conductor iS.very easily damaged by handling. A tougher coating is
extremely desirable. It is recommended that KAPTON wire be considered
for use on future units and that a short program of bench and thermal
vacuum operation be performed with KAPTON wire and the prototype
mechanism when it becomes available from its present flight space

function.



1.0 INTRODUCTION

The systemn EMR has designed provides a unique method for precisely
controlling the deployment and retraction rate of the antennas by using

a hysteresis synchronous motor whose angular velocity is a direct

function of the driving frequency. 7To provide a precise drive source,

EMR has designed a unique circuit which utilizes a stable square wave

to generate a waveform which drives the motor at nearly sine wave
efficiency. A significant itern in EMR's design is the use of a storage

reel with a helical groove and associated traveling guide for antenna storage.
This results in the antenna wire always being stored in the same con-

figuration, preventing creep wire distortion and wire slump.

The following discussions describe in detail a system offering these

significant advantages:

Unique and highly efficient antenna drive

Precise control and measurement of antenna position
No brake required to withstand centrifugal force

Accurate tracking of antenna deployment rates

Typical characteristics for the system.

1) Weight 7.5 1lbs
2) Antenna length (deployed) 195 ft, stainless steel stranded
wire (FEP teflon insulation).
3} Deployment or retraction rate 0 11 FPS
4) Power (exfend mode) 29 watts
5) {retract mode) 22 watts
Capacitance antenna to ground
6) Fully extended ~ 30 pf
7) Fully retracted ~ 60 pf



2.0 SYSTEM DESCRIPTION

The IMP J EFM antenna system consists of four mechanisms arranged
symmetrically about the spacecraft spin axis. Upon command the
antenna conductor is deployed radially. The antenns function is receiving

antennas for an electric field measurement experiment.

The deployment of the antennas increases the moment of inertia of the
spacecraft and therefore reduces the spin rate. Final spin rate when
the antennas are fully deployed is adjusted by spinning up the spacecraft
with the attitude control system. I for any reason the spin rate should
become too low and ACS propellant is not available, the mechanism may

be retracted to increase the spin rate.

As the wire is deployed the centrifugé.l force creating tension in the

wire is increased as a function of the increased radius and is decreased
by the lowering of the spin rate. The spin rate is affected, not only by
the changing moment of inertia, but by the planned spin-up with the ACS.
Figures 2-A thru 2-D show plots of the spacecraft inertia and spin rate,
as well as antenna tension, as the antennas are extended in a typical
deployment scheme. These values were computed and plotted by GSF'C,
Code 732,

The antenna conductor is stored on a drum of slightly over 4 3/4 inches
diameter which is arranged parallel to the long axis of the allowable

volume as shown in Figure 2-1,
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A single layer wrap is used to avoid é.ny_ looseness in packing with subse-
quent creep under an applied centrifugal loading. This avoids the require-
ment for special locking other than to prevent primary drum rotation. A
shallow groove is generated on the surface of the cylinder. A traversing
guide Whlch arranges the conductor in the grooves makes one pass over the
drum to fully store or deploy the conductor. As the guide reaches either
extreme of its travel, it actuates a leaf switch which generates an event |

marker and, for safety, stops motor operation in that direction.

Figure 2-2 provides an electrical block diagram of the system. -

The storage reel is driven through a gear train by a hysteresis synchronous
motor. This type of motor was selected by EMR in preference to a DC

motor to cbtain more precise speed control and minimize RF noise, and

in preference to a stepper motor to increase efficiency and thus require

less operating power. The waveform required to operate the motor is pro-
vided by a unique circuit which generates a modified square wave. Use of

this waveform provides a drive which is substantia.lly as efficient as a sine
wave but requires no complicated and hea\Iry filtering. Since the mdtor operates
synchronously with the frequency of the drive waveform, precise speed control

and thus matching of deployment rate is readily obtainable.

The GSFC specification requires the amount of antenna déployment to be
measured by sensing the moving antenna wire. A number of electronic,
mechanical and optical techniques were considered and the method chosen
by EMR incorporates a separate torque motor driven roller and a second
roller driving a potentiometer. The wire motion rotates the roller thus
driving the potentiometer. The torque motor driven roller prevents slippage
between the potentiometer roller and the wire and has the added advantage

of adding a slight tension to the wire assuring that there will be no wire

"'slump' between the reel and the exit hole,
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The antenna deployment system is mounted in a metal box divided into
compartments, The discrete electronic components are assembled on two
P. C. boards which are located in the electronics compartment, The

reel compartment holds the antenna reel, motor, and multi~-turn potentio-
meter. This compartment is sealed by a screw-down cover plate to make
it RF tight. Electrical connections to the motor, potentiometer, brake
and limit switches are shielded and filtered. The rear plate for this

compartment holds a 9-pin connector and 2 UG~1462 /U bulkhead coax jacks,

Special techniques are used to provide the required 120 db of isoiation ‘
between the reel compartment and the outside. The electronics container
is carefully machined to eleminate leaky seams and provide a close
tolerance between the sides of the container and the two cover plates. The
cover plates are fastened by means of machine screws spaced at 0.5

inch intervals around the perimeter. Compartmenté separated by a solid
wall house the antenna reel and electronic circuits. All wiring from the
circuits to the motor, limit switches, and other electro-mechanical parts
is twisted and double shielded within the reel compartment. Léads from
the electronic circuits to the multi-pin connector (command, power, etc).
are RF filtered with flight-approved EMI suppression feedthr ough filters
(Erie 1200-700 style). A solid wall in the electronic circuits compartment
separates the circuits from the multi-pin connector. The feedthrough
fillers are mounted in this wall. With the double filtering provided by the
shielding within the reel compartment and the suppression filters to the

multi-pin connector, isolation up to 120 db can be obtained,

The feed end of the antenna is connected to a slip ring mounted on the
reel, Two sets of multiple gold-plated spring contacts connect with the
slip ring. These contacts are connected in parallel with the coaxial jacks
on the rear cover and RF test jack (UG-1462/U) on the front of the unit,
When the antenna is partially deployed, the total capacitance with respect
to ground of the jacks, wiring, two sets of finger contacts, slip rings, and

antenna feed wire is approximately 30 pf.



2.1 MECHANICAL DESIGN

The external configuration was defined by the IMP H & J mechanical
interface documents in terms of maximum allowable dimensions
(Figure 2-3). Since capacitance to case is critical, the maximum
allowable dimensions were used and the internal components were
arranged to provide maximum clearance between the antenna conductor

and the metal case.

The antenna conductor (wire) originally selected was 7 twisted sfrands

of 0.007 cadmium bronze. This material performed satisfactorily,

however, testing established that the breaking strength was slightly

under 30 pounds, which did not offer sufficient safety margin. An alternate
cable, with the same strand size, made of type 305 stainless steel was procured

and was the final material used. Some of the properties of the cable are:

1. Non magnetic.
2. 1/2 grams/ft(approximately)
3. 70 lbs breaking strength.

A coating of extruded FEP teflon 0,005 inch thick was applied to tiue
stainless steel conductor to insulate the antenna from plasma effects

in the vicinity of the spacecraft. This ma.térial was applied by HAVEG
Industries to the basic cable. This material performed well; however,
the cdating was extremely vulnerable to mechanical damage in handling.
Several design modifications were made during the testing program to

alleviate stresses imposed directly upon the insulation.
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Appendix A contains a brief analysis of thermal consideration which

led to the choice of the FEP coating.

As shown in Figure 2-1 the antenna conductor is stored on a hollow

drum with a single helical groove in which the conductor is laid,

As the drum is rotated a traveling nut-which engages this same
thread, moves along the axis of the drum, carrying a wire guide which

dispenses or stores the conductor depending on direction of drum rotation.

A hysteresis synchronous motor operates at 8000 RPM driving a worm

and gear reduction and spur gear train. The total gear reduction isg

1440:1 and yields an antenna deployment rate of slightly over 0,11'/second.
The worm and gear pair is included for a large velocity reduction and

to act as a brake to prevent centrifugal force from deploying the antenna,

All gearsincluding the worm were lubricated with dry molybdenum
disulphide in a resin binder Electro Film #4306. Performance of this
lubricant was excellent on the aluminum spur gears. On the stainless
steel worm-bronze gear pair, the lubricant was inadequate under low
temperature (-200 C) vacuum environment. An alternate lubricant
(Braykote 803 with 5% MOSZ) was applied to the worm and gear. Inthe
heavily loaded operation this grease was removed by the shaving action
of the worm and a lubricant loaded brush was added to re-lubricate the
surfaces. It is felt that the nﬁa.j or cause of the lubrication problem
may well be decreased gear center clearance caused by differential
contraction betWegn of the magnesium housing, stainless steel worm

and bronze gear.



Various types of motors were evaluated. Among these were: D.C.

motors and Permanent magnet and variable reluctance stepper motors,

and A,C, Motors.

D C motors have the advantage of being driven directly from the 28 volt
supply without interface driving ‘circuitry. Futhermore, high speed d ¢
motors are capable of high efficiency operation. | However, when the other
parameters and characteristics of a d c motor are investigated several
serious defficiencies are noted. First, the speed of the d ¢ motor (without
governor) is a function of applied voltage and torque, thus, good speed
control and motor to motor tracking are difficult to obtain. Of course,

the speed could be precisely controlled by resorting to one of various servo
closed loop control techniques, however, this solution requires more com-
plex electronics which inturn considerably lowers the overall efficiency and
reliability. Mechanical centrifugal governors which can be packaged within
the motor can also be used to achieve speed accuracies of 1 or 2%, however,
thisapproach requires a set of electrical contacts which are continuously
breaking the inductive load of the series motor -Wincling.' This approach was

rejected for reliability reasons. .

rIr'he reliability of a high quality d ¢ motor is almost entirely dependent on

the wear characteristics of the brushes and commutator, Brush wear is
caused by mechanical wear with the commutator and electrical erosion caused
by electrical arcing. In atotally enclosed motor, the b:fush wear particles are
contained within the motor frame. As a result, these fine particles often find
theéir way to the motor bearings causing premature bearing failure. Futher-

more, .outgassing in a vacuum environment may cause a film formation on the -



motor commutator which can create motor starting problems. The
commutator arcing problem also creates several electrical RFI

problems which demands exotic RFIfilters on the dc power lines.

Stepper motors are driven by sequentially energizing sets of stator
windings. The motor shaft is driven as the stator windings are
commutated. The number of steps per revolution and thus the angle. of
rotation per stop is a function of the number and orientation of the motor
windings, and in some cases, the winding excitation sequence. The stepping
motor windings are energized by a drive circuit which is in turn controlled
by switching logic. Motor rotation speed is & direct function of the pulse
generator frequency driving the switching logic. Since the pulse generator
frequency is easily controlled, the motor speed can be set precisely and
held to within 1% over the temperature range using a multivibrator fre-
guency source. Variable reluctance and permanent magnet stepper

motors are the two most common types. The variable reluctance motor
has the advantage of very low stray magentic field and has a stepping angle
of 15° or less. A permanent magnet stepping motor has a slightly higher
external magnetic field and normally has a stepping angle of 45° or 90°,
The PM motor also exhibits a detent torque with windings de-energized.
Due to the greater stepping angle and the ability to drive the motor windings
alternately in a push-pull sequence, the efficiency ofa PM motor is more
than that of a variable reluctance motor. The efficiency of a PM stepping
motor, however, is poor when compared to other motor types. The power
required by the stepping motor is essentially independent of motor torque,
the efficiency at pull-out torque is in the low 20% range for the best PM
stepping motors. The Request for Proposal, however, requires a 100%

of worst case torque safety factor, therefore, the motor will at worst case
torque be operating at a 10‘% efficiency, Of course, as the torque decreases

from worst case, the efficiency becomes even lower.



Although a stepping motor could be made to operate within the 21 watt
power limit, the feasibility of using a synchronous motor was investigated.
Selected motor can produce a theoretical efficiency o almost 50% at the
pull-out torque point and an efficiency of over 30% at the worst case design
torque point. This motor has no brushes, and precisely locks to a 40 Hz
drive frequency. The hysteresis synchronous motor starts by the hysteresis
losses .induced in the hardened-steel rotor by the revolving field of the
motor winding. Its smooth rotor frees the motor of magentic pulsating
resulting from pole saliency of slots, and is therefore much quieter and
freer from vibration than a reluctance synchronous motor. Because there
is no cogging, smooth and uniform starting conditions results, The
hysteresis synchronous motor can synchronize high inertial loads, and can
pull into synchronization a torque almost equal to the pull-out torque of the
motor. The motor pulls into synchronism with the drive voltage frequency
because of the retentivity of the rotor. The synchronous motor drive
frequency need not slew up to the final drive frequency as would be required
if the stepping motor were operated in its slew range. The synchronous
motor selected has a motor performance which is specified by curves shown
in Figures 2-4a and 2-4b. The worst case operating torque point was
selected at approximately one~half of the motor pull-out torque point.

As shown in Figure 2-4a, the locked rotor torque of the mator is approxi-
mately 35% greater than the pull-out torque of the motor providing an

additional safety margin.

Each end of the two motor windings is driven by a push-pull solid state
current driver as shown in Figure 2-5. The drivers are controlled by an

. . . . 3. 0
electronic commutator which drives the two windings 90 out of phase.



The efficiency of a hysteresis synchronous motor is decreased somewhat
by the presence of drive harmonics; therefore, a proprietary drive
technique was developed which drives the winding by a waveform optimized

for efficiency. Appendix B contains a brief analysis of this technique.
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2.2 ELECTRONICS

Three electrical circuits are used in the EFM antenna module. Each
of these circuits has independent ground returns to spacecraft ground to
prevent interference between circuits. The operation of these circuits

is discussed in this section. ({Reference Figure 2-6)

Figure 2-7 illustrates the Electrical Interface of each antenna with the

spacecraft.

2.2.1 Antenna and Feed Circuit

This circuit consists of the 200 ft antenna wire which is attached at the
feed end to a slip-ring mechanism on the plastic storage drum. The last
150 feet of antenna wire to be deployed is insulated to prevent interference
from extraneous signals near the spacecraft. A bifilar brush assembly
connects the antenna feed to 2 coaxial connectors for output to the experiment
preamplifiers.. The antenna feed is also connected to a microswitch
which shunts the antenna with 1000 Megohms when the antenna is in the
fully retracted position only. The antenna circuit has approximately 60
pf of shunt capacitance to frame whiie it is stowed on the plastic drum.
This capacitance decreases to less than 30 pf when the antenna is fully
derployed. Antenna shunt resistance to frame is greater than 10, 000
megohms., The storage compartment is designed to provide greater than
105 db isolation (50-ohm reference) from the motor driver and telemetry

circuits.
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2.2.2 Motor Driver and Control Circuit

This circuit is designed to drivé a 400 Hz, Z~phase hysteresis

synchronous motor and a 400 Hz, 2-phase torque motor from a +28

volt power source. The hysteresis synchronous motor drives the antenna
drum at a constant rate during deployment while the torque motor maintains
a tension on the antenna wire at the deployment poét. During retraction

the hysteresis synchronous motor ié reversed to retract the antenna at

the same rate as deployment. The torque motor is disabled during retraction.
The motor direction is controlled by the DEPLOY FWD/REV input irom

the spacecraft. When this line is connected to the 28VDC return the motors
will deploy when the +28 volts power is applied. Deployments will continue
until either the power is removed or the antenna is fully extended (200 ft)

and a limit microswitch commands the control circuit to disable the motors.
The antenna is retracted by opening the DEPLOY FWD/REY control line.
When the +28 volt poWer is applied the hysteresis synchronous motor retracts
the antenna until either the power is removed or the antenna is fully extracted
and a second limit microswitch commands the control circuit to disable the
motor. The +28 volt power should be turned off after either full deployment
or full retraction to conserve power since the control circuitry remains
powered when the motors are disabled by either limit switch.

Source~Sink Current Drivers

The end of each motor winding is connected to a source-sink current driver
which can select the +28 volt power, the +28 volt return, or neither. The
source switch at one " end of a winding operates in F:onjunction with the
sink switch at the other end to drive current in one direction through the
motor winding during one-half of the power cycle. During the second

half of the cycle the other source and sink operate to drive current through



the winding in the opposite direction. Saturated current switches are used

to prevent excessive heating in the driver circuits. The second winding

of the motor operates similarly except that the power cycle is phased either
90 or 270 degrees with respect to the first winding to drive the motor either
clockwise or counterclockwise., The torque motor uses a separate pair

of driver switches at one end of each winding and shares a driver switch

pair at the other end of each winding with the hysteresis synchronous motor.
In this way the separate torque driver switches are disabled during retraction

and the torque motor is inoperative.

Motor Control Circuit

This is a LPTTL logic circuit whose function is to provide enable signals
for the source sink current drivers. The circuit is powered by the

+28 volt power through a +5 volt regulator., A delay circuit is included

in the logic to hold the motors off for the first 50 milliseconds after the

+28 volt power is applied to allow the logic to stablize and function normally.
The logic circuit is controlled by the DEPLOY FWD/REV control signal and
the full deploy and full retract limit .switches., The source-sink switch
signals generated by the logic are modified square waves whereby the |
source switch is enabled for only 3/8 of a cycle instead of the full 1/2

cycle to reduce the harmonic content of the motor winding currents and
thereby increases the efficiency of the motor. A full discussion of the

proprietary technique is included in appendix B of this report.



Stable Os.c illator

A 3.2 khz freerunningmultivibrator is used to provide timing fo the
control logic. This circuit is designed to operate within + 1 percent of
the nominal frequency since its stability determines the stability of the
400 Hz motor drive power and antenna deployment rate. Any two antenna

modules on the spacecraft will deploy or retract within +2 percent.

2.2.3 Telemetry Circuit

The EFM antenna module has a 20-turn 5 K linear potentiometer which is
driven by the antenna wire during deployment or retraction. When the antenna
is fully retracted the potentiometer output is within one turn of maximum
voltage and when the antenna is fully extended the potentiometer output is
within one turn of zero voltage. A +5VDC signal from the spacecraft is

used as a reference signal, The LENGTH AP output signal is calibrated

in respect to antenna length over the full 0 to 200 foot extension range.

Separate full-extend and full-retract limit switches are wired in series to a
FULL DEPLOY-FULL RETRACT DP so that the circuit is open only when

the antenna is either fully extended or fully retracted.

Both the LENGTH AP and the FULL DEPLOY-FULL RETRACT DP signals

are furnished to the spacecraft telemetry system.

2.3 TESTING

The me chanisms were subjected to an environmental test program in order
to qualify the antennas for flight use on the IMP J Spacecraft. The program
was based on portions of the Environmental Test Specification for the

Interplanetary Monitoring Platform, IMP H & J sybsystems, S-320-IMP-6.



A spin table equipped with slip rings was fabricated and used to verity the
mechanism's ability to extend and retract at various initial spacecraft
spin rates, Tests were performed at spin rates from 100 RPM to 60 RPM
before and after the mechanisms were exposed to the vibration

environment.

 Operational tests were performed before and after the environmental
test program. These consisted of full extensions and retractions into a
take up device that created a tension profile which simulated the

centrifugal force expected during deployment in orbit.



3.0 NEW TECHNOLOGY

In accordance with the definitions in NHB2170. 1, "New Technology
Reporting', this contract has been considered as a Type II Project.
Nearly all of the scientific effort has been in the fields of electrical
and mechnical engineering. Work has included subsystem design,
design study, system development, theoretical analysis, specification

evaluation and design "trade~off'" analysis.

During the performance of the project each of the engineers and
technicians assigned was periodically reminded of the importance both
EMR and NASA place on the disclosure of new technology. On a regularly
scheduled basis, such disclosures were reviewed by the New Technology
Review Committee consisting of the managers of each department at
EMR and of the General Manager. This committee then decided upon the

disposition of each disclosure.

The prolposal prepared by EMR resulting iﬁ the award of this contract
described in detail a unique motor driv;e circuit, Prior to contract award,
this‘ circuit was evaluated on a breadboard basis to assure feasibility.
During performance of the contract the circuit was implemented in final
form, tested and documented. A description and analysis of this circuit

provided in Appendix B to this report.

Based on a thorough review, this circuit constitutes the only disclosure

of new technology related to this contract,



" " APPENDIX A

Antenna Thermal Considerations
The antennas will consist of four wires 0. 021 inches in diameteér and 200 ft.
long each, extending radially outward from the spacecraft in a plane.
perpendicular to its axis of spin. These wires will be extended from reels
mounted in the spacecraft which may be required to retract the wires under
some circumstances, The outer 50 ft. of each wire will be uninsulated,

but the inner 150 ft. will have an insulating covering of 5 mil Teflon.

The major therrhal problems which must be considered are the following:

1) The maximum temperature reached by the wire must not
degrade the insulating coating or excessively reduce the
tensile strength of the wire.

2) The minimum temperature reached by the wire at a2 time when
it is being reeled in or out must not be low enough to cause
brittleness of the wire or its insulating covering.

3) The temperature difference between the sunlit side of the
wire and the opposite side must not be large enough to
produce appreciable curvature of the antenna.

The first two of these problems can be examined by calculating the steady
state temperature limits of the wire. Only the condition of the spacecraft
in full sun will be considered. (It is assumed that the antennas will be

neither deployed nor retracted while the spacecraft is in shadow.)

The steady state temperature of a long thin wire in full sun depends upon

its surface solar absorptance o its emittance ¢, and its orientation

relative to the sun.

4 _
T —Asc.sa

A e

-1
‘S = solar constant = 1. 36 x 10 ~ watts/cm



v -12 2
¢ = Stephan Boltzmann constant = 5,67 x 10 watts/cm  deg
o = integrated solar absorptance
= emittance

projected area perpendicular to solar radiation

€
A

s
A

1t

effective emitting area

For the case of the spacecraft axis parallel to the spacecraft-sun line,
the wires will have a maximum projected area of AS/A = 1, As the
il

spacecraft é,xis is rotated away from the spacecraft-sun line, the‘value of
ASIA will decrease to a2 minimum value of AS/A = 2/112' at 90°. Here the
sun line is parallel to the plane of the antenna wires. The portion of the
wire for whic.h the temperature is critical, however, is the part which is
flexing as the antenna is being deployed or retracted. Thisl portion is
very close to the spacecraft body, and so will be shadowed up to half of the

time. Thus the meaningful minimum value of AS/A = These values of

1
2
m

As/A aré averages over a full revolution of the spacecraft about its axis.

It is assumed that this rotation is rapid enough that temperature oscillations

over a half revolution are not significant.

B . - . 1
Some temperature limits are calculated below using T4 =(2.4x10 0 deg4)

(AS/A)(CISIS) for a variety of wire surface materials.

Material o € a fe T@ A fA=1 T@A [A=1

B 5 s — g b

i A

m
evaporated gold .2 027 10 525°K 395°K
evaporated aluminum .08 .02 4 418°K 315°K
black paint or black teflon .9 .9 1 296K 222K
clear teflon over gold .2 .8 1/4 209°K 173°K
clear teflon over aluminum .08 .8 1/10 166 °K 125°K

oxidized bronze .5 .5 1 296°K 222

stainless steel . . 46 .23 2 352k 264



These temperatures were calculated for the steady state, considering only
radiative heat transfer between the sun, the wire and space. Radiative
and conductive heat transfer to the spacecraft will have some influence
on the wire temperaturé, particularly on the near portion, bringing the

wire temperature closer to the spacecraft temperature,

The materials to be used for the antenna wires and for the insulated covering
can be chosen so that their values of c_!s/e will give operating temperature

limits within which their mechanical properties remain satisfactory.

The third thermal problem is determination of the distortion of the wire due
to unsymmetrical solar heating. An exact calculation of this effect would
‘be very tedious, but an order of magnitude approximation can quickly show
-that the resulting curvature is negligible. For this approximate calcula-
tion, consider the wire to be of square cross section of thickness d, with
the entire solar heat load incident on one face, and reradiated to space by
the opposite face. The heat absorbed per unit length will be Sasd. ¥ we
consider this total heat flux as transmitted the distance d to the other face
through a medium of conductivity K, the temperature difference AT between
faces will be

2

1d S« dSu
= - s 5

: AT ,
= v I R

taking d = 0.021 inch =5.33 x 1072 c¢m

K=0.1 cal =0.42 watts
' cm deg C sec cm deg C
o =1.0

8

S =136 x 10_3 Wa.tts_/cm2

AT=(5.33x 10”2cm)(. 136 % 10'-3 w/cmz)(l. 0)=1.7x 10'-2 de.gree C
0.42 watts/cm deg C

This approximation has been calculated as a maximum value of AT. I

we assume a thermal expansion coefficient of 1.0 x 10.-5 per degree. C (typical



for stainless Eteel),‘ we have a differential expansion of 1.7 x 10-? between the

two sides of the wire. If the wire were not under tension, this would cor -

respond to a radius of curvature of R = 0,021 inch = 1.2 x 10° inches~ 104ft
' 1,7x 1077

Thus even neglecting the straightening effect of centrifugal force, the

thermally induced curvature of the wire is not significant,



Ao r i i g e [ e s e

H

S

Tl S ._,_-_,;___f\(

-
.

.

/.

/
LA
<L

H
At

[

v
=2

?,_

1
1
1
'
v}

~

AN
-

B ————

N/

.

-
J

e

A et et L PP T,

L

14|

.__-iilw.

b s £

.: v /

<L

LOGIC

i

i

i

==

}

!

L
-

)

'

i
---‘-_.-
1
|

7

/

7
/

4

./I
e
A
e e
poe L
H
.J..L ey
e
N W

N
-

s s
.

(e

ne

=

J
7 <

=
~ .l_
BRIy

o

o, Y

[<C

_
SaH
W

i

Inl_ J—

?J.,_ ot
5|
4

f

e it ek i

/ \B/ 75

:.LT.U
1

i~
3 =

ND

o .

-

~ ok

Ctad ™~ 2

= e

. - .

Y - S

NEN - 5

o .‘,\ﬁ n\r\
R I

{7

LLi
it
£y

.



 APPENDIX B

Drive Circuit Analysis

The efficiency of a hysteresis Synchronous motor is decreased

when the sinusoidal motor drive is replaced by the square - wave drive
obtained from a DC power source. To improve the square - wave
efficiency EMR has developed aproprietary modified square-wave
drive technique wlereby the positive and negative parts of the drive
waveform are separaed by an '"off" period whose width is set to

optimize the amplitade of the fundamental frequency.

The general waveform which is to be optimized is shown in figure

1. The Fourier series representation of this waveform is:
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(1} oon+l g

5 .
f(t) = 44 E L sinZTTn—'-I‘— coséwa
i1 n T0 . .
T n+l .
> = 1

For maximum efficiency, it is desirable to choose a value of T/T,

which produces the maximum fundamental rms to input rms ratio,

(2) :
E {fundamental)
rms

Erms (input) | B

The rms value of the fundamental caﬁ be determined from equation (1).

(3) ' '
4
E (fundamental) = 0.707 24 si nE”l:l)
rms i T,

The rms value of the input waveform can be determined by using the

root-mean-square intergral,

{4) N1/2
Erms {input) =(4A2 -%; )

Substituting equation (3} and (4) into equation (2) and simplifying the '

resulting expression. .

(5) T,
4 (sin2n T,)

nE T T

T (21’[ —

To

By differentiating the above equation in respect to T and setting the result

equal to zero the maximum efficiency point is found to be:



T
— =, 18
T 55
o}

and T = 66,8°

At this value of T/To’ the rms value of the fundamental waveform is 92, 28%
of the input waveform, This value is compared to a value of 81.05% for a

square wave excitation input.

The motor chosen is a size 15, type CT20174024 manufactured by the

Kearfott division of Singer-General Precision, Inc. The winding wire size

and number of turns are changed so the motor can operate at the prescribed
voltage level. The input power and torque characteristics however, remain

the same as specified for the 115 volt motor, Curves showing the speed, input
power, output power, factor, efficiency and current per phase are shown in
Figure 5 and 6 for the proposed motor. This motor will pull into synchronization
with the 400 Hz applied voltage waveform within 28 ms after power turn-on

at 1/2 pull-out torque. An idealized current waveform was derived for

a motor winding with a equivalent circuit represented by a series resistor and

inductor. The values of these componenfs were calculated at a torque corres-
pondirig to . 65inch-ounces or 1/2 pull-out torque. The current waveform pro-
duced by applying a voltage waveform using the above calculated T/T ratio is
shown in Figure 1, The fundamental of the resultant current waveform is also
plotted for comparison, It is observed that the harmonic content is almost
‘negligible. For equal motor performance., the input power to each winding is
6.10 watts when driven from a 400 Hz sine wave source and only 6,124 watts
when driven by the proposed waveform at a 400 Hz rate. Less than 1% is lost
- in efficiency by driving the motor with the proposed voltage waveform. The
reason that the efficiency is much higher than the 92,28% figure previously

calculated which represents the rms value of the fundamental to rms value of
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T
—_=,1
T 855
o

and T = 66.80

At this value of T/To, the rms value of the fundamental waveform is 92, 28%
of the input waveform. This value is comparedto a value of 81.05% for a

square wave excitation input.

The motor chosen is a size 15, type CT20174024 manufactured by the

Kearfott division of Singer-General Precision, Inc. The winding wire size

and number of turns are changed so the motor can operate at the prescribed
voltage level. The input power and torciﬁe characteristics however, remain

the same as specified for the 115 volt motor. Curves showing the speed, input
power, output power, factor, efficiency and current per phasé are shown in
Figure 5 and 6 for the proposed motor. This motor will pull into synchronization
with the 400 Hz applied voltage waveform within 28 ms after power turn-on

at 1/2 pull-out torque. An idealized current waveform was derived for

a motor winding with a equivalent circuit represented by a series resistor and

~ inductor. The values of these components were calculated at a torque corres-
ponding to. 65 inch-ounces or 1/2 pull-out torque. The current waveform pro-
duced by applying a voltage waveform using the above caicﬁlated T/T, ratio is
shown in Figure 1. The fundamental of the resultant current waveform is also
plotted for comparison, It is observed that the harmonic content is almost
negligible. For equal motor pe‘rformancel, the input power to each winding is

6. 10 watts when driven from a 400 Hz sine wave source and only 6,124 watts
when driven by the proposed waveform at a 400 Hz rate. Less than 1% is lost

in efficiency by driving the motor with the proposed voltage waveform. The
reé.son that the efficiency is much higher than the 92.28% figure previously

calculated which represents the rms value of the fundamental to rms value of



the input voltage drive is that at the calculated T/T0 ratio the 3rd and 5th
harmonics are very small. The 7th harmonic and above see a large coil
inductive rea.ctancé; therefore, the power dissipated by the harmonics is

the above negligible value.

The actual motor commutator is designed with a value of T equal to 67. 50.
This considerably simplifies waveform generation since voltage is alternately
applied across each winding for periods of 37 /4 radians with zero volts applied
between alternate voltage pﬁlses for a period of /4 radians as shown in Figure
2 . This slight change in T has negligible effect on the previous efficiency
calculations. Apgain, referring to Figure -2 it is seen that the motor is
reversed by chénging the timing seqﬁency of winding 2 voltage drive waveform.
The voltage waveform lags the winding 1 waveform by 90° when the motor

is to run in the forward direction and leads the winding 1 waveform by _900

in the re_ve:rse direction. A typical drive circuit is shown in Figure 3,

Output transistor Q5 is energized applying 28 volts to the winding when the

A. input is high, and output transistor Q9 is energized which grounds the
winding terminal when input B is high, Referring again to Figure 3 with

a driver at each end of motor winding 1 as shown in Figure 4 :. let us con-
sider a winding drive sequence. At time t;, the A input to driver I goes high
and the B input goes low which turns on Q5 and turns off Q% which applies 28
volts to one side of the winding. Capacitor Cl is included in the drive circuit
{see Figure .3 ) which slightly del‘a.ys the turn-on of Q5 to insure sufficient
turn off time of Q9 thus preventing a current through Q5 and Q9 at the transition
time. At time tys the B input of driver 2 goes high turning on transistor Q9.
This produces a 28 volt potential across winding 1 and current goes from the
28 volt supply through Q5 of'drive circuit 1, through the motor winding, and
through Q9 of drive circuit 2 to the power return line. At time tp, transistor
Q5 of drive circuit 1 is turned off, No transition problem occures at ty since
Q9 of driver 1 does not turn on until time t3. During this interval the inductive
field of the motor causes current to continue flowing from driver 1 to driver 2

(see Figure 1 ). This current flows through dicde CR2 of driver 1, through



the motor winding, and through transistor Q9 of driver 2, The voltage
across the motor winding during this interval is the sum of the voltage drops .
of CR2 and Q9, At time t3,. transistor Q9 of driver 2 turns "off" and transis-
tor Q5 turns "on' applying 28 volts to the driver 2 side of the motor winding,
At time t3, Q9 of driver 1l is turned Yon'., At time t3 (see Figure 1 ') the
forward current through the motor coil still has not decayed to zero.
Therefore, since Q9 of driver 2 is turﬁed dff, the current continues flowing
in the forward direction from ground through CR2 of driver 1, through the
motor winding, to the 28 volts supply through diode CR1. The inductive

field for a‘period of time after switching point At3 is generating power and
returning power to the 28 volt supply. At the point the winding current decays
through zero, the reverse current is supplied from the 28 volt supply through
;:ransistor Q5 of driver 2, through the motor winding, and through transistor
Q9 of driver 1 to ground. At pointt,, Q5 of driver 2 is turned off and the
reverse current in the t4 to tg interval continues flowing through CR2 of
drivér 2 and Q9 of driver 1. At time te, Q5 of driver 1 turns "on' and Q9
turns off again applying 28 volts to the driver 1 side of the winding. Q9 of
driver 2 also turns 'on' at time t5. The reverse current decays through
CR2 of driver 2 and CR1 of driver 1 until it reaches zero at which time
forward current will again flow through Q5 of driver 1 and Q9 of driver 2.
The drive operation of winding 2 is identical except it is made to either lead

or lag the winding 1 drive frequency by 90° as shown in Figure 2,

The éomposite waveform drawing of the current profile of the 28 volt power
source is shown in Figure 7: An inductor will be placed in series with the
28 volt line as shown in Figure 4. ..to smooth current- ripple to within the
125 milliamp requirement of the RFP, Since the lowest frequency of the
current ripple is 1600 Hz, the above filtering can be accomplished easily
with a small inductor and capacitors which are shown in quad redundant
configuration for reliability. In addition, RFI filters will be used to keep
.the conducted line interference below acceptable limits as well as protecting

the internal antenna from interference external to the antenna package.
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HYSTERESIS SYNCHRONOUS MOTOR,

PERFORMANCE CURVES

KEARFOTT TYPE CTZ20174024
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